Risk alleles identified in a genome-wide gene-by-cannabis dependence interaction analysis of risky sexual behaviors

Renato Polimanti¹, Shashwath A. Meda², Godfrey D. Pearson¹,²,³, Hongyu Zhao⁴,⁵, Lindsay A. Farrer⁶, Henry R. Kranzler⁷, Joel Gelernter¹,³,⁵

¹Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
²Olin Research Center, Institute of Living/Hartford Hospital, Hartford, CT, USA
³Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
⁴Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
⁵Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
⁶Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
⁷Department of Psychiatry, University of Pennsylvania School of Medicine and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA

We conducted a genome-wide gene-environment interaction analysis to identify genetic variants that interact with cannabis dependence (CaD) in influencing risky sexual behaviors (RSB) and increasing risk of sexually transmitted infections (STI) and human immunodeficiency virus (HIV). Our sample included 3,350 African-American (AA) and European-American (EA) subjects (CaD: 43%; AA: 56%; Women: 33%; STI+: 33%; HIV+: 6%). A DSM-IV CaD diagnosis and RSB were evaluated using the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). RSBs were analyzed as a score that takes into account experiences of unprotected sex and multiple sexual partners. We identified a genome-wide significant locus in AAs (S100A10 rs72993629, p=2.73*10⁻⁸) and a potential trans-population signal in women (CLTC rs12944716, p=5.27*10⁻⁸). S100A10 rs72993629 also showed a trend in the interaction with CaD in determining both STI and HIV status (p=0.054 and p=0.071, respectively). A gene-based analysis also identified TMOD2, a neuronal-specific tropomodulin, as a candidate in both ancestry groups (AA p= 9.49*10⁻³; EA p= 6.10*10⁻³). A resting fMRI follow-up analysis of S100A10 rs72993629 conducted in an independent cohort showed two significant associations: reduced power of the left paracentral lobule in ALFF (Amplitude of Low Frequency Fluctuations) analysis (p=7.8*10⁻³), and reduced power of right pallidum in fractional ALFF analysis (p=4.6*10⁻³). The activity of these brain regions is known to be involved in sexual functions and behaviors. The S100A10 result functionally recapitulated our previous S100B finding observed in a genome-wide association study of CaD. The probability of identifying two of the 19 known S100 genes in two independent genome-wide investigations by chance is approximately one in 1,100,000. The S100A10 and S100B genes, which are located on different chromosomes, encode highly specialized calcium binding proteins. These data strongly support a role for calcium homeostasis in cannabis use and behaviors that it may influence.