Outline

- Alcoholism is a complex disease
- Genes with strong effects-the exception
- Strategies & results: COGA
- Functional studies
- Where are we?
Alcoholism (like diabetes) is a complex genetic disease

• Runs in families, but no simple pattern
 - Children of alcoholics are at 2- to 4-fold higher risk
 - But fewer than half become alcoholic
• Risk is affected by genes
• Risk is affected by choice
It is hard to find genes affecting risk for complex diseases

- Phenotypic complexity, heterogeneity
- Multiple genes, each with small effect
- Environmental variability
- Gene-gene interactions
- Gene-environment interactions
Outline

• Characteristics of alcoholism that shaped our strategy
• Genes with strong effects - the exception
• Strategies & results: COGA
• Functional studies
• Where are we?
Metabolism matters!

- Strong protective effects of
 - high-activity ADH enzymes
 - nearly inactive ALDH2 enzyme
 - “endogenous disulfiram”
 - 1/2 to 1/8 the risk.
ADH1B variations affect risk

- **ADH1B*2** (His48; rs1229984) encodes more active ADH
 - High frequency in East Asians (~70%)
 - Strongly protective against alcohol dependence (~10^{-41}); OR 2-4
 - Low prevalence in Europeans (<5%)
 - Strongly protective (7 x 10^{-10}); OR ~3
 - Not found in GWAS; coverage, frequency

Li et al, in press; Bierut et al, in press
Metabolism (pharmacogenetics) is not everything

• No other genes with as large an effect have been found
• There is a large fraction of the risk that ADH and ALDH don’t explain, particularly in European populations
• So…
How can we identify other genes that contribute to the risk of alcoholism?
Outline

- Characteristics of alcoholism that shaped our strategy
- Genes with strong effects - the exception
- Strategies & results: COGA
- Functional studies
- Where are we?
COGA: Collaborative Study on the Genetics of Alcoholism

- Principal Investigators: B. Porjesz, V. Hesselbrock, H. Edenberg, L. Bierut
 - Univ. of Connecticut V. Hesselbrock
 - Indiana University H. Edenberg, J. Nurnberger Jr., T. Foroud
 - University of Iowa S. Kuperman, J. Kramer
 - SUNY Downstate B. Porjesz
 - Washington University L. Bierut, A. Goate, J. Rice, K. Bucholz
 - Univ. of Calif. (UCSD) M. Schuckit
 - Rutgers University J. Tischfield
 - Southwest Foundation L. Almasy
 - Howard University R. Taylor
 - VCU D. Dick
 - NIAAA Staff Collaborators: A. Parsian, M. Reilly

This national collaborative study is supported by NIH Grant U10AA008401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA).
COGA

- Large, family-based, genetic study
 - 14,000 interviewed

- Detailed subject characterization
 - SSAGA, Electrophysiology

- Now following adolescents & young adults prospectively
Hypotheses that have shaped our strategies

• Most of the variation that underlies complex genetic disease leads to subtle regulatory differences, not major coding differences—so look across genes.

• Most variations will have a small effect.

• Broad linkage peaks probably harbor several genes that affect the phenotype.
COGA strategies

- Family studies: linkage and candidate genes
- Case-control Genome-Wide Association Study (GWAS)
 - Family follow-up
- Family GWAS with follow-up
- Rare variants - next-gen sequencing
- Functional studies
Primary discovery sample

- Families densely affected by alcohol dependence
 - Probands recruited from treatment facilities
 - Families with at least 3 alcohol dependent first degree relatives
Initial strategy

• Linkage studies of the densely-affected families

• Follow-up genotyping
 - Candidate genes in regions of linkage
 - SNPs across regions of linkage
 - Variations across genes- not just coding region
 - Additional candidate genes

• Endophenotypes also analyzed
Linkage and family follow-up: \(\text{GABA}_A \) Cluster and Alcoholism

- \textit{GABRA2} is associated with alcoholism and with \(\beta \)-EEG (endophenotype)
 - Association concentrated among the more severely affected (e.g. early onset, dependent on other drugs)
 - Effects differ across life-cycle
- Recent evidence (NIAAA, Yale): \textit{GABRG1 - GABRA2} region also
GABRA2: effects of high risk allele differ across the life cycle

- **Conduct disorder symptoms** in young people
 - Odds Ratio for ≥ 3 symptoms = 2.0
- **Alcohol dependence** by mid 20s

Dick et al. 2006, Behav Genet 36, 577
Broad linkage peak on chromosome 4: multiple genes associated
ADH Gene Cluster

-log(p-value)

bp X 1,000,000

ADH5 ADH4 ADH6 ADH1A 1B 1C ADH7

p = 0.01

p = 0.05

Edenberg 2011
Two regions of association in ADH cluster

- **ADH4** driven by MORE severe
 - Early age of regular drinking
 - Early first drunkenness
 - Early onset of dependence

- **ADH1B-ADH1A** driven by LESS severe

- Pharmacogenetics makes sense:
 - ADH1A, ADH1B, ADH1C at low alcohol
 - ADH4 at intoxicating levels
Other genes in the broad linkage peak on chromosome 4

- **ADH genes**
- **NFKB1**
- **SNCA**
- **TACR3**
- **NPY2R**
Systems approach: Links within and between systems

• Given \(\textit{GABRA2} \), examine other \(\textit{GABA}_A \) receptor genes
 - \(\textit{GABRG3}, \textit{GABRA1} \)

• Given literature, examine opioid system
 - Kappa system: both \(\textit{OPRK1}, \textit{PDYN} \)

• Linkage between systems: \(\textit{PDYN} \) is regulated by NF\(\cdot \)B (Bakalkin)
 - site near significant SNPs
Our initial strategy (linkage/candidate genes) has been successful

- **Genes that influence risk for alcoholism**
 - GABRA2, CHRM2, ADH4, ADH1A, ADH1B, CHRNA5, GABRG3, OPRK1, PDYN, NFKB1, ANKK1, ACN9, NPY2R, CRHR1 ...

- **Genes that influence related traits**
 - SNCA, CHRM2, CHRNA5, CHRNA3, CNR1

- **Genes that influence neurophysiology:**
 - GABRA2, CHRM2, GRM8

- **Replications. Continuing work**
But...

• Many more genes to find
COGA GWAS: case-control design

- **Cases:** DSM-IV alcohol dependence
- **Controls:** not alcohol dependent, not dependent on illicit drugs
- **Multiple ethnicities**

High density Families
1° discovery sample

Lower density families

Comparison families
GWAS Genotyping

- CIDR (Center for Inherited Disease Research)
- Illumina HumanHap 1M beadchips
- Data available: dbGaP

- Funding: NIAAA, NIH GEI (U01HG004438), NIH contract (HHSN268200782096C)
Results

• No SNP was genome-wide significant (similar to most GWAS: underpowered)
 \(<10^{-5}: 11\)
 \(<10^{-4}: 97 \ (27 \ also \ with \ early \ onset)\)

• Regions with multiple SNPs \(\leq 10^{-4}\)
GWAS: interesting genes

- **BBX** - bobby sox homolog
- **CARS** - cysteinyl-tRNA synthetase
- **NAP1L4** - nucleosome assembly
- **SLC2A14** - glucose transporter
- **SLC37A3** - glycerol-3-P transporter
- **OSPBL5** - oxysterol-binding
How can we prioritize genes and regions?

• Replication (difficult: ‘winner’s curse’)
• Support from
 - clustering of SNPs
 - related phenotypes (early onset)
 - follow-up in families (PDT)
 - gene expression studies
Support for SNPs from prior GWAS (Treutlein et al., 2009)

- Replicated with same risk allele:
 - **GATA4*** (transcription)
 - **ID4** (transcription)
 - **ADCY3*** (second messenger)
 - **PRKCA** (second messenger)
 - **SYNE1*** (neurological disease)
 - **ARL6IP5** (inhibits Glu transporter)

*among top in our early onset analysis
Pathway analysis

<table>
<thead>
<tr>
<th>Ingenuity Canonical Pathways</th>
<th>pvalue</th>
<th>Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyotrophic Lateral Sclerosis Signaling</td>
<td>0.0020</td>
<td>GRIN3B, HECW1, GRIN2C, CAT, GRIA4, CASP7</td>
</tr>
<tr>
<td>GABA Receptor Signaling</td>
<td>0.0041</td>
<td>GABBR2, GABRR2, GPHN, GABRP</td>
</tr>
<tr>
<td>Glutamate Receptor Signaling</td>
<td>0.0091</td>
<td>GRIN3B, GRIN2C, SLC1A1, GRIA4</td>
</tr>
<tr>
<td>Calcium Signaling</td>
<td>0.0363</td>
<td>GRIN3B, CAMK2D, ITPR2, GRIN2C, CHRNA7, CHRNB3</td>
</tr>
<tr>
<td>Neuropathic Pain Signaling In Dorsal Horn Neurons</td>
<td>0.0468</td>
<td>GRIN3B, CAMK2D, ITPR2, GRIN2C</td>
</tr>
</tbody>
</table>
COGA Family GWAS

- Large families
- Many alcohol dependent individuals
- Electrophysiological measurements
- European-Americans (to reduce heterogeneity)

Large, high density Families
COGA Family GWAS

118 large families

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyped individuals</td>
<td>19.8</td>
<td>17</td>
<td>6 - 70</td>
</tr>
<tr>
<td>Alcohol dependent</td>
<td>6</td>
<td>5</td>
<td>1 - 31</td>
</tr>
<tr>
<td>EEG data</td>
<td>14.2</td>
<td>13</td>
<td>6 - 70</td>
</tr>
</tbody>
</table>
Distribution of Family Size

Number of Families

Number of genotyped individuals/family

mean median
Association Analysis: work in progress

• Imputation still in progress
• Quantitative trait: symptom count (0-7)
 – Dependence diagnosis as 2° phenotype
• Applying several analytical methods
 – Covariates: Age at evaluation, Sex, Cohort effects
• Looks promising
Next steps

• Seek replication in other datasets
• Prioritize findings for followup
 - multiple SNPs, methods
 - interesting genes, variants
• Test in full COGA sample
 - many more families and individuals
GWAS are a powerful approach, but with limitations

- GWAS targets common variants
 - Expect most common variants to have small effects (natural selection)
Rare variants may also contribute

- Hypotheses:
 - Genes whose products are involved in pathways that affect risk for alcoholism are likely to have both common variants with small effect and rare variants with larger effect
 - Rare(r) variants that increase risk for disease more likely to be found in affected subjects (may not be in 1000 genomes)
Common and rare variants in same gene

- Cystic Fibrosis: a classic “simple Mendelian disorder” (autosomal recessive)
- CFTR gene identified 1989
 - Cases shared a relatively common polymorphism: F508del, ~66% of cases
- BUT: 1721 other mutations are known, and mutations not yet found for many cases
 - Allelic heterogeneity, rare mutations
Two strategies

• Targeted resequencing in regions with evidence for association
• Exome sequencing of extreme families
Targeted resequencing in pools

- Pool DNA from subjects (96/pool)
 - Organize pools by phenotype
- Amplify individual fragments (PCR)
- Combine equimolar amounts of each fragment
- Multiplex sequencing (barcoded)
- Statistical analysis to detect variants
Re-sequencing targets

- GABA-receptors
- ADHs
- Opioid system [already found functional variant with standard sequencing: OPRK1]
- Chromosome 11 region from GWAS
- Nicotinic receptors
- Muscarinic receptors
ADH1C-ADH1B-ADH1A

Coding and regulatory variants
Variant discovery: distinguishing rare alleles from noise (sequencing error)

- Idea: noise will show up as 3rd and 4th alleles (assuming 2 allele SNP)
 - Conservative modeling: is the number of hits for the 2nd allele greater than for the 3rd?
 - Set α (false positive rate)
 - Set $\beta = 0.1$ (power = 90%)
- Test whether SNP is replicated in second experiment
Error model works well as judged by technical replicates

<table>
<thead>
<tr>
<th># chromosomes detected</th>
<th>Average % confirmed</th>
<th>Min % confirmed</th>
<th>Max % confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83.7%</td>
<td>80.5%</td>
<td>91.3%</td>
</tr>
<tr>
<td>2</td>
<td>99.9%</td>
<td>99.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>3</td>
<td>100.0%</td>
<td>99.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>4</td>
<td>100.0%</td>
<td>99.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Confirmation by independent technique in progress
Challenge: prioritization

- Current estimates: 6-30 x 10^6 bp differences between individuals
- Which are related to the phenotype?
- Need bioinformatics to prioritize SNPs for follow-up
 - Function, position
- Test inheritance and association with alcoholism in families
Rare variants of larger effect: exome sequencing in families

• **Coding changes are likely to have larger effects, easier to interpret**
 - Exome sequencing
• **Extreme families:**
 - densely affected
 - early onset
 - extreme electrophysiology
 - Linkage: high lod score
Outline

• Characteristics of alcoholism that shaped out strategy
• Genes with strong effects—the exception
• Strategies & results: COGA
• Functional studies
• Where are we?
Functional analyses

- Promoter variations affecting gene expression [ADH4, ADH1B, OPRK1]
- Global gene expression studies
- Allele-specific gene expression
- Alternative transcripts [GABRA2]
- Epigenetic studies
- Model organisms: rats, mice, flies, worms
Conclusions

• Variations upstream of *ADH1B* affect gene expression
 – Associated with risk for alcoholism

• Variations proximal to *ADH4* affect expression
 – Promoter, 3’ region

• Variations distal to *ADH4* (upstream enhancer *ADH-4E*) affect expression
Other functional studies

- Global gene expression differences related to alcoholism, alcohol exposure or preference for alcohol (arrays, seq)
 - Human autopsy brains
 - Human lymphoblastoid cells
 - Rat brains
- Allele-specific gene expression
- DNA methylation/epigenetics
Genes that differ in expression after ethanol exposure that were implicated in GWAS

- BBX
- EPHB1
- AGPAT5
- CAMK2D
- PHLDA2
- PRKD2
- GPHN
- SOX6
- OXTR
Pathways affected by alcohol

• Pro-inflammatory (especially NF-κB)
• IL-6 signaling
• Hepatic fibrosis/stellate cell activation
• PPAR signaling
Genes with expression differences in alcoholics

- 567 probe sets
 - 43% also affected by ethanol
- Some interesting ones:
 - KCNA3
 - PRKCE
 - HDAC7
 - PDE4A
 - VDR
 - PNOC
Outline

- Characteristics of alcoholism that shaped our strategy
- Genes with strong effects - the exception
- Strategies & results: COGA
- Functional studies
- Where are we?
Where are we?

- Tremendous progress
 - Multiple strategies- families, case-control studies, candidate genes, GWAS
 - Specific genes identified
 - Candidates awaiting confirmation
 - Exploring associations on many levels
 - Molecular, phenotypic
We’re not looking for “the gene for alcoholism”

- There is no such gene!
- There are variations in many genes that lead to variations in physiology that affect the risk that we will become alcoholic (or depressed, diabetic...) and affect the course of disease
Where are we going?

• Finding more genes
 - Expanded family sample (more than doubled)
 - Meta-analyses
 - Confirmations in other datasets
 - Systems analyses
Where are we going?

- Exploring function on many levels
 - Molecular and cellular studies
 - Epigenetics
 - Endophenotypes and other disorders
 - Effects across the lifespan
 - Large adolescent sample
 - Prospective study (12-25)
Pharmacogenomics: can we predict which medications help specific individuals?

- Some initial studies (1 or a few variants)
 - Naltrexone: *OPRM1; OPRK1*
 - Bromocriptine, olanzapine: dopamine
 - Acamprosate, topiramate: glu receptors
 - Ondansetron: *HTT*(serotonin)
- Psychotherapy: *GABRA2*

- BUT: need more comprehensive approach.
- Need to bank samples in clinical trials!
Caution: complexity of mapping genotype to phenotype

(Dowell et al., 2010, Science 328:469)

• **Yeast knockouts**
 - *Saccharomyces cerevisiae S288c* (reference) vs. Σ1278b (close relative)
 • As similar as 2 humans
 - Test for conditional lethal genes
 • 5000 genes tested
COGA: Collaborative Study on the Genetics of Alcoholism

- Principal Investigators: B. Porjesz, V. Hesselbrock, H. Edenberg, L. Bierut
 - Univ. of Connecticut V. Hesselbrock
 - Indiana University H. Edenberg, J. Nurnberger Jr., T. Foroud
 - University of Iowa S. Kuperman, J. Kramer
 - SUNY Downstate B. Porjesz
 - Washington University L. Bierut, A. Goate, J. Rice, K. Bucholz
 - Univ. of Calif. (UCSD) M. Schuckit
 - Rutgers University J. Tischfield
 - Southwest Foundation L. Almasy
 - Howard University R. Taylor
 - VCU D. Dick
 - NIAAA Staff Collaborators: A. Parsian, M. Reilly

This national collaborative study is supported by NIH Grant U10AA008401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA).
Acknowledgments

<table>
<thead>
<tr>
<th>Jeanette McClintick</th>
<th>Tatiana Foroud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaoling Xuei</td>
<td>Leah Wetherill</td>
</tr>
<tr>
<td>Yunlong Liu</td>
<td>Dan Koller</td>
</tr>
<tr>
<td>Sirisha Pocharredy</td>
<td>Rachel Thowe</td>
</tr>
<tr>
<td>Jun Wang</td>
<td>Sheena Becker</td>
</tr>
<tr>
<td>Ronald Jerome</td>
<td>Jun Li</td>
</tr>
<tr>
<td>Sowmya Jairam</td>
<td>Praveena Yarru</td>
</tr>
<tr>
<td>Hui-Ju Chen</td>
<td>Bill McBride</td>
</tr>
<tr>
<td>Huijin Tian</td>
<td>Rick Bell</td>
</tr>
</tbody>
</table>

National Institute of Alcohol Abuse and Alcoholism

ADH: R37AA006460
Gene expression in rat brain: U01AA016660