Cytoplasmic FMR1-interacting protein 2 is a major genetic factor underlying binge eating

Stacey L. Kirkpatrick1, Lisa R. Goldberg1,2, Neema Yazdani1,2,3, R. Keith Babbs1, Jiayi Wu1,3,4, Eric R. Reed1,5, David F. Jenkins5,6, Amanda Bolgioni1,2, Kelsey I. Landaverde1, Kimberly P. Luttik1, Karen S. Mitchell7, Vivek Kumar8, W. Evan Johnson6, Megan K. Mulligan9, Pietro Cottone10, Camron D. Bryant1

1Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
2Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
3Transformative Training Program in Addiction Science, Boston University
4Ph.D. Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine
5Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA
6Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
7Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
8The Jackson Laboratory, Bar Harbor, ME USA
9Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN USA
10Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA

Background: Eating disorders are lethal and heritable; however, the underlying genetic factors are unknown. Binge eating is a highly heritable trait associated with eating disorders that is comorbid with mood and substance use disorders. Therefore, understanding its genetic basis will inform therapeutic development that could improve several comorbid neuropsychiatric conditions.

Methods: We assessed binge eating in closely related C57BL/6 mouse substrains and in an F2 cross to identify quantitative trait loci (QTL) associated with binge eating. We used gene targeting to validated candidate genetic factors. Finally, we used transcriptome analysis of the striatum via mRNA sequencing (RNA-seq) to identify the premorbid transcriptome and the binge-induced transcriptome to inform molecular mechanisms mediating binge eating susceptibility and establishment.

Results: C57BL/6NJ but not C57BL/6J mice showed rapid and robust escalation in palatable food consumption. We mapped a single genome-wide significant QTL on chromosome 11 (LOD=7.4) to a missense mutation in cytoplasmic FMR1-interacting protein 2 (Cyfip2). We validated Cyfip2 as a major genetic factor underlying binge eating in heterozygous knockout mice on a C57BL/6N background that showed reduced binge eating toward a wild-type C57BL/6J-like level. Transcriptome analysis of premorbid genetic risk identified the enrichment terms “morphine addiction” and “retrograde
endocannabinoid signaling” whereas binge eating resulted in the downregulation of a gene set enriched for decreased myelination, oligodendrocyte differentiation, and expression.

Conclusions: We identified *Cyfin2* as a major significant genetic factor underlying binge eating and provide a behavioral paradigm for future genome-wide association studies in populations with increased genetic complexity.

FUNDING: R21DA038738, R03DA038287