CREB-mediated activation of Zfp189 and re-engineering ZFP189 within mouse accumbens reveal transcriptional mechanisms governing cocaine-induced neuroadaptations

Joseph Picone1*, Collin Teague2*, Gabriella Silva1, Caleb Browne2, Rita Futamura2, William Wright3, Angélica Minier-Toribio2, Rachael Neve4, Yan Dong2, Xiaohong Cui1, Eric Nestler2, Peter Hamilton1

1Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine; 2Friedman Brain Institute, Mount Sinai School of Medicine; 3Department of Neuroscience, University of Pittsburgh; 4Gene Delivery Technology Core, Massachusetts General Hospital; * denotes equal contribution

Research over the past three decades has demonstrated that transcription factors (TFs), such as CREB, functioning within brain reward regions, regulate changes in reward sensitivity across many classes of drugs. However, since the drug-induced function of a given TF directly regulates the expression of many genes simultaneously, it is challenging to elucidate the causal transcriptional events that drive these drug-responsive neuroadaptations. Here, we utilize a novel fusion construct consisting of an RNA-guided, nuclease-dead Cas9 (dCas9) tethered to CREB to directly target CREB binding to individual genes in mouse brain. We observe that localizing CREB to an informatically identified gene target, Zfp189, within mouse nucleus accumbens (NAc) results in physiological activation of Zfp189 expression, potentiated cocaine self-administration, and heightened neuronal function in response to cocaine in a medium spiny neuron subtype-dependent manner. To interrogate the downstream targets of the Zfp189 gene-product, a Krüppel associated box (KRAB) zinc finger TF of unknown function, we replaced the ZFP189 KRAB domain with a transcriptional activating VPR domain. These novel constructs robustly regulate expression of a targeted luciferase gene and divergently affect cocaine, but not morphine, related behaviors when delivered intra-NAc. These experiments indicate Zfp189 is a gene target through which CREB manifests tolerance to cocaine, and that the downstream functions of ZFP189 are directly responsible for altering cocaine, but not morphine, related behaviors. This work is evidence that neuroepigenetic editing models a single drug-induced molecular interaction and identifies its causal contribution to the broader syndrome, which may reveal therapeutic targets for drug addiction.