Predicting smoking cessation treatment outcomes with genetic risk scores and biomarkers

Li-Shiun Chen, M.D., M.P.H., Sc.D.,1 Timothy Baker, Ph.D.2, Michael Bray, Ph.D.1, Giang Pham, MPH, Laura Bierut, M.D.1

1Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
2Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

Introduction: This study aims to evaluate the potential of polygenetic markers to enhance current treatment by incorporating an individual’s genetic and metabolism risk biomarkers.

Methods: We investigated two predictors: a) genome-wide polygenic scores for smoking phenotypes and b) biomarker nicotine metabolite ratio. We evaluated bio-verified end-of-treatment abstinence among smokers in two randomized control trials (N=1,898 including 807 in the Genetically Informed Smoking Cessation Trial (GISC) and 1,091 in the University of Wisconsin Trial).

Results: Both polygenic risk scores for failed smoking cessation and polygenic risk scores for delayed age of smoking initiation predict end-of-treatment abstinence in both trials (meta-analysis OR=0.89, 95%CI=0.80-0.99, p=0.037; meta-analysis OR=1.2, 95%CI=1.1-1.4, p=0.00038 respectively, N=1,592 smokers of European Ancestry). In addition, the nicotine metabolite ratio biomarker predicts treatment response as assessed by end-of-treatment abstinence in 807 GISC trial smokers of both European and non-European Ancestry. Specifically, slow nicotine metabolizers respond better to nicotine replacement vs. placebo (OR=4.7, 95%CI=1.7, 14.9, p=0.0040), but not varenicline vs. placebo (OR=2.5, 95%CI=0.87-8.1, p=0.11). In contrast, normal nicotine metabolizers respond to both nicotine replacement and varenicline vs. placebo (OR=2.04, 95%CI=1.12-3.8, p=0.021; OR=4.15, 95% CI=2.38-7.49, p=9.8e-7 respectively), but varenicline produces significantly higher end-of-treatment abstinence than does nicotine replacement (OR=2.0, 95%CI=1.2-3.3, p=0.0050 for varenicline vs. nicotine replacement).

Conclusion: Polygenic risk scores predicted overall treatment success and the NMR biomarker predicted differential treatment response. These findings strengthen the case that polygenic risk scores and a metabolism biomarker provide complementary information that could be useful for treatment development, treatment assignment, and prediction of outcome.