Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in NIH Heterogeneous Stock rats.

Nazzareno Cannella¹, Stefano Tambalo², Veronica Lunerti¹, Giulia Scuppa³, Luisa de Vivo¹, Sarah Abdulmalek⁴, Analia Kinen^{1,4}, James Mackle⁴, Brittany Kuhn⁵, Leah C. Solberg Woods⁶, Dongjun Chung⁷, Peter Kalivas⁵, Laura Soverchia¹, Massimo Ubaldi¹, Gary Hardiman⁴, Angelo Bifone^{3,8}, Roberto Ciccocioppo¹

¹School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy

²CIMeC, Center for Mind/Brain Science, University of Trento, Trento, Italy ³Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.

⁴Faculty of Medicine, Queen's University Belfast, UK ⁵Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA

⁶Wake Forest School of Medicine, Winston-Salem (NC), USA ⁷Department of Biomedical Informatics, The Ohio State University, Columbus (OH), USA

⁸Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy

Reduced grey matter volume (GMV) has been associated with opioid use disorder (OUD). Whether this is the consequence of prolonged exposure to opioids or a factor predisposing to OUD remains unclear. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock (HS) rats exposed to prolonged long access heroin self-administration and yoked heroin-naïve controls. We chose the HS for their large genetic heterogeneity to closer mimic the human population.

Heroin self-administration resulted in escalation of drug intake and in reduced cortical and sub-cortical GMV, while no changes were observed in drug-naïve controls. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and insula positively correlated with the amount and the escalation of heroin consumption. Next, by an RNAseq analysis in the mPFC, we identified a large set of genes altered by heroin, among which we found several transcripts linked to neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. Thus, we analyzed the morphology of microglia in the mPFC and insula. The primary motor cortex, where no GMV change was observed, was used as negative control. In the same regions where reduced GMV was detected, we observed a shift towards a rounder microglia shape and size reduction, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.