Submitter Name: Julia (Kate) Brynildsen PI Name: Julie Blendy Submitted Email: jbryn@seas.upenn.edu PI Email: blendy@pennmedicine.upenn.edu

Gene coexpression patterns predict opiate-induced brain-state transitions

Julia K. Brynildsen¹, Kyla D. Mace², Eli J. Cornblath¹, Carmen Weidler³, Fabio Pasqualetti⁴, Dani S. Bassett^{1,5-9}, and Julie A. Blendy²

¹Department of Bioengineering, University of Pennsylvania;
²Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania;
³Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University;
⁴Department of Mechanical Engineering, University of California, Riverside;
⁵Department of Neurology, University of Pennsylvania;
⁶Department of Psychiatry, University of Pennsylvania;
⁷Department of Electrical & Systems Engineering, University of Pennsylvania;
⁸Department of Physics & Astronomy, University of Pennsylvania;

Opioid addiction is a chronic, relapsing disorder associated with persistent changes in brain plasticity. Reconfiguration of neuronal connectivity may explain heightened abuse liability in individuals with a history of chronic drug exposure. To characterize network-level changes in neuronal activity induced by chronic opiate exposure, we compared FOS expression in mice that are morphine-naïve, morphine-dependent, or have undergone 4 weeks of withdrawal from chronic morphine exposure, relative to saline-exposed controls. Pairwise interregional correlations in FOS expression data were used to construct network models that reveal a persistent reduction in connectivity strength following opiate dependence. Further, we demonstrate that basal gene expression patterns are predictive of changes in FOS correlation networks in the morphine-dependent state. Finally, we determine that regions of the hippocampus, striatum, and midbrain are most influential in driving transitions between opiate-naïve and opiate-dependent brain states using a control theoretic approach. This study provides a framework for predicting the influence of specific therapeutic interventions on the state of the opiate-dependent brain.