Submitter Name: Zhenyao Ye PI Name: Tianzhou (Charles) Ma Shuo Chen Submitter Email: zye@som.umaryland.edu PI Email: tma0929@umd.edu shuochen@som.umaryland.edu

Alcohol-Induced Alterations in Brain Functional Connectivity: Insights from Whole-Brain Data-Driven Analysis in Older Adults

Zhenyao Ye^{1,2,} Chuan Bi¹, Yezhi Pan¹, L. Elliot Hong³, Peter Kochunov³, Tianzhou Ma⁴, Shuo Chen^{1,2,4}

 ¹ Department of Psychiatry, University of Maryland, Baltimore;
² Department of Epidemiology and Public Health, University of Maryland, Baltimore;
³Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio; ⁴ Department of Epidemiology and Biostatistics, University of Maryland, College Park; ⁵University of Maryland Institute for Health Computing

Background

Alcohol intake results in altered brain connectome patterns. Although previous studies reported alcohol intake-related brain functional connectivity (FC) changes, the consent has not been reached (e.g., hyper- vs. hypo-connections). To address this gap, we perform whole-brain data-driven network analysis to systematically investigate the impact of alcohol.

Methods

We focused on participants aged \geq 40 from UK Biobank and compared the brain FC between two alcohol status groups: hazardous alcohol use (HAU, n =8,216, 46.82% female, mean age (SD) = 55.47(7.53)) and controls (n=7,730, 68.69% female, mean age (SD) = 57.78(7.29)). HAU was defined using the Alcohol Use Disorders Identification Test gating logic, International Classification of Disorders 10 and diagnosis codes for alcohol dependence and alcoholic fatty liver. We applied a data-driven network analysis to assess the effect of alcohol on whole-brain FC accounting for age, sex and head motions. The data-driven network analysis can mitigate the bias due to the subjective selection of seed voxels and networks of interest.

Results

We identified an organized HAU-related subnetwork (β = -0.013, p<0.001). The subnetwork exhibits a bipartite graph structure, showing systematically decreased connections between the nodes from the sensorimotor network, dorsal attention network, and ventral attention network (component 1) and nodes from default mode network (DMN) + central executive network (CEN) (component 2) in HAU participants.

Discussion

Alcohol intake in older adults systematically reduces FC between motor skill-related brain subnetworks and DMN+CEN, which reveals potential neurobiological mechanisms underlying alcohol-induced declines in motor planning, coordination, delayed reactions, diminished judgment and cognitive function.